Inspections, Code Reviews

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

QL
AAAAA

REAL CODERS HELP EACH OTHEE

COULD YOU UPDATE
YOUR WORKSPACE
WITH THE SVN
REPOSITORY?

geck & poke

geek & poke

BY THE WAY:
DON'T UPDATE!
YOU GET HUNDREDS OF
COMPILE ERRORS

'ME GUESS. YOU'VE JUST
THAT- NOW YOU HAVE 1000
ILE ERRORS AND YOU DON'T
WANNA BE THE ONLY
IDIOT HERE-

1000 AM: UPDATING THE WORKSFACE

Learning Goals

* Understand different forms of peer reviews with different formality levels.
* Engage in constructive modern code review using a typical commit review system.

* Describe the benefits and properties of good checklists in code review.

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%%“ UNIVERSITY OF TORON"}O

Formal Inspections

(Professional QA com

Software inspection is a process of finding defects and
deficiencies in a developed software product and ensuring that it
fulfills the client’s requirements.

"i‘i{'é The Edward S. Rogers Sr. Deparrment
] | of Electrical & Computer Engineering

i‘g« UNIVERSITY OF TORONTO

Formal Inspections

* |dea popularized in 70s at IBM
* Group of developers meets to formally review code or other artifacts

* Most effective approach to find bugs
* Typically 60-90% of bugs found with inspections

e The Edward S. Rog SD}
‘ofEl cal & Cor } r Eng

IIU
%:, UNIVERSITY e TORONTO

Inspection Team and Roles

 Typically 4-5 people (min 3)
* Author

* Inspector(s)
* Find faults and broader issues

* Reader
* Presents the code or document at inspection meeting

e Scribe
e Records results

* Moderator
* Manages process, facilitates, reports

afl The Edward S. Rog SD}
K2R of Electrical & Cor 1, r Eng

IIU
%:, UNIVERSITY e TORONTO

Roles _

Moderator

Recorder/
Scribe

https://www.professionalga.com/insp

ection-roles-participants-and-process H

. Moderator
Planning
Inspectors

(one scribe,
~ one reader,
“one verifier)

Rework

Followup

Edward S. Rogers Sr. Department
ectrical & Computer Engineering

UNIVERSITY OF TORONTO

Checklists

* Include issues detected in the past

* Preferably focus on few important items

* Examples:

* Are all variables initialized before use?

* Are all variables used?

* |s the condition of each if/while statement correct?
* Does each loop terminate?

* Do function parameters have the right types and appear in the right order?
* Are linked lists efficiently traversed?

* |Is dynamically allocated memory released?

e Can unexpected inputs cause corruption?

* Have all possible error conditions been handled?
* Are strings correctly sanitized?

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

424 UNIVERSITY OF TORON"}O

C1

Process details

e Authors do not explain or defend the code — not objective
* Author != moderator, !=scribe, |=reader
* Author should still join the meeting to observe questions and
misunderstandings and clarify issues if necessary
* Reader (optional) walks through the code line by line, explaining it
* Reading the code aloud requires deeper understanding
* Verbalizes interpretations, thus observing differences in interpretation

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

BENEFITS:

Finds defects or faults. *
Improves quality, such as coding style, best practices, etc.
Assists with debugging.

Educates and trains developers.
Communication is improved.
Collects data for metrics.

{i’{‘, The Edward S. Rogers Sr. Deparrment
‘ of Electrical & Computer Engineering
e g

%@ UNIVERSITY OF TORONi"O

Software Inspection

Disadvantages:

e | ogistics and scheduling can become an issue since multiple people are involved.
e [ime-consuming as it needs preparation as well as formal meetings.
e |tis not always possible to go through every line of code with several parameters and their combination to

ensure the correctness of the logic, side effects and appropriate error handling.

* https://www.educba.com/software-inspection/

Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

=0;s<n. 1eng .08 ca i
(t,e);return r(i),

[] ’ retur ‘Vér's=0;s<n.1ength

{1 (){var t=|];return

"function”==typeof a°a

onal=!0),7&&(u._scopeld

parent.$vnode8&this.pare

", t&&t._registeredComponent
:u.beforeCreate;f?(u._inject
urn{esModule:o,exports:a,optio
‘ ction o(t,e){return t.add(e
:return t. ca11 e,n(@]);case call(e,n[@],n[1]);casq
p,n,r) {for(var i=-1, s—nu11==t :){var o=t[1i];:e

;++n<r&&!1!==e:tinj,n,td;3-- ,e){for(var
n t}function f(t,e){for| ength; ++n<y

=t?0:t.length,i=0,s=| ' (s[1
)&&C(t,e,0)>-1}function
r=null==t?0:t.length,1
|=e[n];return t)}functi®
ion g(t,e,n,r){var -Hi=nu
L. Tength;++n<r;)if(e(tY
(t,e,n){var rj;return nf
yif(e(t(sl,s,t))retur e
;)if(r(t[i],e))return 1;
action T(t){return fupsg

HOW TO MAKE A
GO0OD CODE REVIEW

geek & poke

Modern Code Review

AT LEAST WE
DON'T NEED TO
OBFUSCATE IT
BEFORE
SHIPPING

RULE 1- TRY TO FIND
i ol & Commprt Engieeig AT LEAST SOMETHING

& UN PSR (O TORONTE POSITIVE

Code Review

https://help.github.com/articles/using-pull-requests/

43

Linus's law: “Many eyes make all bugs shallow”

----Standard Refrain in Open Source
& THE BAZAAR

MUSINGS ON LINUX AND OPEN SOURCE
BY AN ACCIDENTAL REVOlUTIONARY

o A Peer
= Reviews
/ . in Software

ERIC S RAYMOND

WITH A FOREWORD BY BOB YOUNG, CHAIRMAN & CEO OF RED HAT, INC.

“Have peers, rather than
customers, find defects”
--- Karl Wiegers

Karl E. Wiegers

:'i} The E‘I 1\R s Sr. D} ment
_‘ of Electrical & Cor 1, r Eng

HU
;.,,” UNIVERSITY OF TORONTO

Isn’t testing sufficient?

* Only completed implementations can be tested (esp. scalability,
performance)

* Design documents cannot be tested
* Tests don’t check code quality

* Many quality attributes (eg., security, compliance, scalability) are
difficult to test

’fi}j The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

A second pair of eyes

* Different background, different experience
* No preconceived idea of correctness

* Not biased by “what was intended”

Expectations and Outcomes
of Modern Code Reviews

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. |EEE Press, 2013.

Reasons for Code Reviews

* Finding defects
* both low-level and high-level issues
* requirements/design/code issues
* security/performance/... issues

* Code improvement
* readability, formatting, commenting, consistency, dead code removal, naming
* enforce to coding standards

* |dentifying alternative solutions

* Knowledge transfer

* |learn about APl usage, available libraries, best practices, team conventions, system
design, "tricks",

» "developer education”, especially for junior developers

Edward S. Rog SD}t nt

;’ﬁ‘ il @ Clo 1, uter Engine

‘&?ﬁ UNIVERSITY OF TORONTO

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. |EEE Press, 2013.

Reasons for Code Reviews (continued)

* Team awareness and transparency
* let others "double check" changes
e announce changes to specific developers or entire team ("FYI")
» general awareness of ongoing changes and new functionality

* Shared code ownership
* shared understanding of larger part of the code base
e openness toward critique and changes
* makes developers "less protective" of their code

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. |EEE Press, 2013.

Code Review at Microsoft
Ranked Motivations From Developers

o = B Top B Second [Third

Viewing Iteration |
" niine = fshowBoth § = a-b = b
B description.tt 37 for (int i = @; i < Times; i++)
_ - 38 {
e R T /He P— =
B $/eseresearch/Code/CBirdUtil/H Console.kriteLinc(*He1Id (B)! , Name);
S el 39 onsole.WriteLine(" 1", Greeting, Name);
% Hello.csproj C le.WritelL {e} {1}!", Greeting, N
43X Program.cs 40 }
+ &K Test.cs

: ' Wouldn't it be better to put this as a parameter of
the SayGreeting method?
Alberto Bacchell Knowledge Transfer

Iwouldn't. Greeting is already a field! If you do that,
you'd want to make Times a parameter as well,

-
-
-

Finding Defects

Code Improvement

paa4 SMaN E

ﬂmgggm

Alternative Solutions

Tom Zimmermann Team Awa reness

Good point. I'll leave it as is.
B @mﬂ Bird Improve Dev Process
i ':V'R lved ~
eveneiSiati * - - Avoid Build Breaks

3, Christian Bird (author)

m

(© Alberto Bacchelli s :
\ Tom Zimmermann @ stavtus File name = Share COde OwnerShlp
o Nachi Nagappan 4 @ Active 53| S/eseresearch/’Cod&/CBirdUtiI/HeIIo/Progra@ 5

Track Rationale

omplete Review m 4 [Tom Zimmermann] Don't forget to initialize,

[Christian Bird] Should we initialize to "Hello" or throw an error if the user does

M 4 o/ Resolved #] S/eseresearch/Code/CBirdUtil/Hello/Proaram.cs 2 Team Assessment

m »

-
-
-

I

o

200 600

400
Resrc MM Microsoft

e Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%"?m@ UNIVERSITY OF TORONTO

Outcomes
(at Microsoft analyzing 200 reviews with 570 comments)

* Most frequently code improvements (29%)
e 58 better coding practices
* 55 removing unused/dead code
e 52 improving readability

* Defect finding (14%)

* 65 logical issues (“uncomplicated logical errors, eg., corner cases, common
configuration values, operator precedence)

* 6 high-level issues
* 5 security issues
* 3 wrong exception handling

* Knowledge transfer .. °
12 pointers to internal/external documentation etc . IVI |Cr050ft

Outcomes (Analyzing Reviews)

Code Improvements
Understanding

Social Communication
Defects

External Impact
Testing

Review Tool
Knowledge Transfer
Misc

O:%> 10% 20% 30% =. IVI ic rOSOft

‘ To;‘nputer Engineering
OF TORONTO

‘ 0 ctrica
%ﬁ@ UNIVERSITY

I
&

Mismatch of Expectations and Outcomes

* Low quality of code reviews
* Reviewers look for easy errors, as formatting issues
* Miss serious errors

* Understanding is the main challenge
* Understanding the reason for a change
* Understanding the code and its context
* Feedback channels to ask questions often needed

* No quality assurance on the outcome

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Code Review at Google i r"]

* Introduced to “force developers to write code that other developers
could understand”

* 3 Found benefits:

* checking the consistency of style and design
* ensuring adequate tests

* improving security by making sure no single developer can commit arbitrary
code without oversight

Caitlin Sadowski, Emma Soderberg, Luke Church, Michal Sipko and Alberto Bacchelli. 2018. Modern Code
Review: A Case Study at Google. International Conference on Software Engineering

Peter requests a code review

Team Explorer - My Work * 3 X Team Explorer - New Code Review v+ 3 X
° e m Q Search Work Items (Ctrl... p - ° Q Q Search Work Items... p .

My Work | TestScrum New Code Review | TestScrum

/

4 In Progress Work 2 edit(s) | View Changes

Suspend ~ PN) .
Select one or more reviewers to review your

| Request Review || Finish | Actions ~ changes and enter a comment for them if

appropiate
@ 23 - Fix paid invoice flagged as not paid

2 edit(s) | View Changes

Add Recent Reviewers ~«

b Suspended Work Adam Barr (Fabrikam)

P Available Work Items
P Code Reviews

o
)
aa /uliallyina (Fabrikam)

> ‘ Enter the name of a reviewer <optio v

/ Add Reviewer | Press Enter to add this reviewer

E Code Review for Task 23: Fix paid invoice
flagged as not paid
O TestScrum v

o (J EqualTo now allows for rounding errors.

= Submit Request Cancel

https://www.niallkennedy.com/blog/2006/11/google-
mond ran. html https://docs.microsoft.com/en-us/azure/devops/re?pos/t_fvc/day-Iife-alm- .. M icrosoft
https.//wwwyoutu beco m/WatCh ?stMq |3D|4Kgc developer-suspend-work-fix-bug-conduct-code-review?view=azure- .

devopstrequest-a-code-review

he Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

,.,,%@ UNIVERSITY OF TORONTO

https://www.niallkennedy.com/blog/2006/11/google-mondrian.html
https://www.youtube.com/watch?v=sMql3Di4Kgc

H google / eng-practices ® Watch ~ 621 Y7 Star 153k % Fork 1.4k

<> Code () Issues 3 il Pull requests 3 (+) Actions [wiki () Security |~ Insights

¥ master ~ ¥ 2branches © 0 tags Go to file Add file ~ About

Google's Engineering Practices

ninabikes and Copybara-Service Add missing comma. - v eafflef onAug4) 54 commits documentation
BB review Add missing comma. 2 months ago @ google.github.io/eng-practices/
[LICENSE Internal change 8 months ago 0 Readme
[README.md Internal change 2 months ago &8 View license
[_config.yml Internal change 13 months ago
Releases
README.md No releases published
. 4 4 .
Google Engineering Practices Documentation Packages

A o A A % No packages published
Google has many generalized engineering practices that cover all languages and all projects.

These documents represent our collective experience of various best practices that we have
developed over time. It is possible that open source projects or other organizations would benefit
from this knowledge, so we work to make it available publicly when possible.

Contributors m

e . =
Currently this contains the following documents: * o & o
o D 2 9=
* Google's Code Review Guidelines, which are actually two separate sets of documents: -~ “ur
o The Code Reviewer's Guide "

o The Change Author's Guide

Google's Code Review Policy

 All change lists must be reviewed. Period. 7 ‘
* Any CL can be reviewed by any engineer at Google.

* Each directory has a list of owners. At least one reviewer or the author must be an owner for each
file that was touched in the commit. If the author is not in the owners file, the reviewer is
expected to pay extra attention to how the code fits in to the overall codebase.

* [... readability review ...] If the author does not have readability review, the reviewer is expected
ico pay ex’;ra attention to coding style (both the syntax and the proper use of libraries in that
anguage).

* One can enforce that any CLs to that directory are CC'd to a team mailing list.
* Reviews are conducted either by email, or using a web interface called Mondrian

* In general, the review must have a positive outcome before the change can be submitted
(enforced by perforce hooks). However, if the author of the changelist meets the readability and
owners checks, they can submit the change TBR, and have a post-hoc review. There is a process
which will harass reviewers with very annoying emails if they do not promptly review the change.

source: https://www.quora.com/What-is-Googles-internal-code-review-policy-process, 2010

Edward S. Rogers Sr. Department
lectrical & Computer Engineering

R m“ UNIVERSITY OF TORONTO

2
%/

https://www.quora.com/What-is-Googles-internal-code-review-policy-process

—t— " - ’ a
T @ Q = 0 earch Work ltems (Ctrl+") L ~
= ,

or validation helpers */ Home | Fabrikam Fiber e
dation-error {
#b94a43; 4 Project
Web Portal | Task Board | Team Room

ot lid @ My Work @ Pending
ation-valid { | %] Changes
: none; - = ‘

= Source Control

v Explorer | g Work ltems O
validation- /
validation-error { ._‘}c‘_‘ Builds |$ Settings '

o Tcam Explorer - New Code Review]

o
bl L - | = 0 Search Work Items (Ctrl+") L ~
- ® Ml Team Explorer - My Work
or validation helpers */ New Code Review | Fabrikam Fiber = 2
dation-error { i)) * 0 Search Work Items (Ctrl+")
#b94a43; I3 Streaming Video: Using Code Review to improve qual v -
r validation helpers */ e TR
1 edit(s) | View Changes . P My Work | Fabrikam Fiber
dation-valid { Sy] .] . . ation-error {
: none: €lECT ONE Or MOore reviewers to review your changes an 2 . 1 . . = - A W
; e e e b94a48; @ Streaming Video: How to multi-task with My Wc
4
-validation-error { B e e e In Progress Work
: 3 M Johnnie Mcleo v . . : Acti
T ation-valid { Suspend ¥ @equest RE‘."IEW)ChECk In | Actio
Add Reviewer | Press Enter to add this reviewer 1
g & 1 edit(s) | View Changes
"checkbox"].input-validation-error {— N v ges
9 rone; &= Hello World border color
¢ Fabrikam Fiber . | validation-error { 4 Suspended Work
-summary-errors { i . Resume | Merge with In Progress
4b04a45; 1px solid #ddd; | gev g

(7 Changed the border color to Zddd

-summary-valid { l Submit Request lCancel
: none; g

4 Related Work ltems

No suspended work.

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

,g;?mg@ UNIVERSITY OF TORONTO

facebook

[NON JHIRY El} & secure.phabricator.com ¢)

[

*V @v ¥ v Search Q

I @ Chad's Dashboard

Fee @ ® (<] & secure.phabricator.com ¢ t a | +
57 private function buildTasksView(PhabricatorUser $user) { 57 private function buildTasksView(PhabricatorUser $user) {
& Hor 58 $viewer = $this—>getViewer(); 58 $viewer = $this->getViewer();
59 59
LINKS 60 $open = ManiphestTaskStatus::getOpenStatusConstants();
[) ® < il & secure.phabricator.com @] Y]

®, Ger (+

& Inst & Projects > Projects > Workboard Natural Q Open Tasks | & X

& Bu

j Backlog (Default) 18|0 = Future 3|0 « Far Future 5|0 = 9v3 6112 -

& Fea

w Cat T12144 Ability to reorder milestones T10266 Firefox body scroll fails when T11036 Put subproject columns on
on a project's workboard dragging tasks workboards

APPLICA A Feature Request & Workboards =~ % Firefox

L T10350 Scripts to migrate old "points"

L | fields and move projects beneath other
T11974 Projects should allow setting T7190 Project templates/Copying tasks projects pro)

i Ma of any icon & Maniphest »

<> Diff '51
T11923 Unhandled Exception - Cant . .

© Auc '%3 import columns for new workboard T6502 Policy to define who can move I T10349 Proiects v3 Frrata

https://github.com/phacility/phabricator

The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

@é@ UNIVERSITY OF TORONTO

How Facebook Catches Bugs in Its 100 Million Lines of Code

For the past four years, Facebook has quietly used a homegrown tool called Zoncolan to find bugs in its massive codebase.

ELENA LACEY

https://www.wired.com/story/facebook-zoncolan-static-analysis-tool/

Gerrit Code Review T+

& rietveld-codereview / rietveld ® Watch ~ 67 V¢ Star 465 % Fork 177
<> Code (1) Issues 235 1 Pull requests 3 (») Actions [1] Projects [wiki () Security
B master - Gotofile Addfile~ About “As I've learned over the last
Code Review, hosted on two years at Google, where |
"' andialbrecht Merge pull request #569 from cedk/oau... - on Apr 28,2019 {91,450 Google App Engine developed a Similar tOOI named
codereview Remove XMPP notification 3yearsago @ codereview.appspot.com Mondrian, proper code review
habits can really improve the
Rietveld Code Review Tool quality of a code base, and good
Issues Repositories Search tools for code review will
Open Issues | Closed Issues | All Issues | Sign in with your Google Account to create issues and add comments I m p rove d eve / o p ers 1 I I:fe.”

Recent Open Issues

Id Subject Owner Reviewers
» 566080043 Clean up and fix glyph contour generation hanwenn Dan Eble, lemzwerg, hahnjo, aaireill111

277230044 class of service Tom Henderson Stefano Avallone, Tommaso Pecorella
555820043 flask-tryton: Convert records ids to string before joining them pokoli ced

6493067 Test code review post ItzmE29 gallion342, baby546833, itzme29, bichpt

1758041 code review 175804 1: iofioutil: add CopyFile Kyle Lemons eliarconcepcion, adg, 3
545890043 flask-tryton: Add support for 5.6 series pokoli ced https://github.com/rietveld-codereview/rietveld
554030043 Issue 4182: avoid checking the offset of cross-staff stems too early barrykp Dan Eble, lemzwerg

569700043 Split glyph contours in up/down segments for skylines hanwenn dak, lemzwerg, hahnjo
560030044 Remove deprecated context properties Valentin Villenave thomasmorley651, lemzwerg

576090043 Fix #5964: MM Rests shouldn’t segfault when there's no StaffSymbol. Valentin Villenave Dan Eble, dan, carl.d.sorensen

Gerrit Code Review

2 eclipse <
Fetch & rebase DA ko B
e e e e —————————

Git push Developer i
- ; KO !
ngp]mlt & Auto review Jenkins - 'E
P sonarqube :
| A 4!
Commit-amend Team review : -
& push 44\ A Development |
team E
-2 ‘:

Merge Delivery i https://bcouetil.gitlab.io/acad

architect ko | emy/BP-gerrit.html

enkins -~ K
Fetch & rebase sonarqube |
S |
¥ \,ig :
.
= Nexus = —
Integration tests Functional

ao. Ogets it epartlnent
Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Ideal MediaWiki Workflow

1) pushes his patch &Core Team

2) review others patches

s N Validates / rejects
| GERRIT | chanoes
Developer i: Merge to WMF repository
Receives review,
- validation [>

notifications
Notifies Reports verification
repo Jenkins status as a comment

and +1/-1

~

JENKINS
http://www.mediawiki.org/ f:lri]reﬂ':-rcyhzlccli(patch then:
wiki/Gerrit/Advanced usage P

- run tests suites

e Edward S. Rogers Sr. Department
Electrical & Computer Engine

3 UNIVERSITY OF TORONTO

Process: Checklists!

The Checklist:

https://www.newyorker.com/magazine/2007/12/10/the-checklist

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

NIVERSITY OF TORONTO

OFFICIAL A.A.F. PILOT’S CHECK LIST

B-17F AND B-17G

For detailed instructions see Pilot's Handbook AN 01-20EF-1 or
AN 01-20EG-! in data case

PILOT
BEFORE STARTING

. Pilot's Pre-ﬂigh'—Comlete.
2. Form IA, Form F, Weight a

Balance — Checked.

. Controls and Seats — Checked —

Checked.

. Fuel Transfer Valves and Switch—

Off

. Intercoolers — Cold.

. Gyros —Unc 5

. Fuel Shut-off Switches — Open.

. Gear Switch — Neutral.

. Cowl Flaps —Open Right —Open

Left —Locked.

. Turbos — Off.

. Idle cut-off —Checked.

. Throttles — Closed.

. High RPM — Checked.

. Auto Pilot — Off.

. De-icers and Anti-icers Wing and

Prop. —Off.

. Cabin heat — Off.
. Generators — Off.

STARTING ENGINES

. Fire Guard and Call Clear — Left-

Right.

. Master Switches—On.
. Battery Switches and Inverters —

On and Checked.

. Parking Brakes — Hydraulic Check-

On— Checked.

. Booster Pumps — Pressure —On_

and Checked.

. Carburetor Filters — Open.
. Fuel Quantity — Gallons per tank.
. Start Engines

a. Fire Extinguisher Engine Selec-
tor — Checked.
b. Prime — As Necessary.

CO-PILOT
BEFORE TAKE OFF

. Tail Wheel — Locked.
. Gyro—Set.
. Generators —On.

AFTER TAKE OFF

. Wheels —Pilot's Sig nal.

. Power Reduction.
. Cowl Flaps.
. Wheel Check— OK Right.

OCONOCNDWON =

OK Left.
BEFORE LANDING

. Radio Call Altimeter — Set.
. Crew Positions — OK.
. Auto Pilot — Off.

Booster Pumps — On.
Mixture Controls — Auto Rich.

. Intercooler — Set.

. Carburetor Filters— Open.
. Wing De-icers — Off.

. Landing Gear

a. Visual —Down right
Down left
Tail wheel
Down,
Antenna In

b. Light — OK.

¢. Switch Off —Neutral.

. Hydraulic Pressure —OK. Valve

closed.

. RPM 2100 — Set.
. Turbos — Set.
. Flaps /3 —1/3 Down

FINAL APPROACH

. Flaps — Pilot’s Signal.
. High RPM — Pilot’s Signal.

Is the code
following coding
Standards /

Guidelines?

Can | Unit Test
or Debug the
code easily?

-

Am | able to
understand the
code easily?

Is the code
duplicated more

Is the function or than twice?

class too big?

https://www.codeproject.com/Arti
cles/1156196/Code-Review-

Basic Code Reviewer Checklist

he Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Is the code Scalable

Single
to support huge Responsibility Opep C]osed
number of users? Principle Principle

Is the code
Maintainable
easily?

Is Security
taken care?

Dependency
Injection
P fls bis Is the code Following]
iy OOAD (Object
acceptable with

huge data? Oriented Analysis &

Is the code meeting Design) principles ?

the Non Functional
Requirements?

Is Code follows
defined
Architecture?

Is the Static Code
Analysis metrics
acceptable?

Expert Code Reviewer

he Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://www.codementor.io/

Your COde REViEW ChECk"St: 14 blog/code-review-checklist-
Things to Include roarovied

Code Review
Checklist:

14 Things

to Include

https://www.coursera.org/lecture/introduction-git-
github/how-to-use-code-reviews-in-github-QH52K

[F3] codementor

- P
+

o

Code Review
Best Practices

Reviewing Relationships

Project lead

Education
Maintaining
Maintaining norms
. norms Gafak :
Readability Develober atekeeping . or
reviewers P teams
Education - .
Maintainin ucation
norms = ccident prevention
New team Other team
members members

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

How to write code review comments

e Be kind.
* Explain your reasoning.

* Balance giving explicit directions with just pointing out problems and letting the developer
decide.

* Encourage developers to simplify code or add code comments instead of just explaining the
complexity to you.

Bad: “Why did you use threads here when there’s obviously no benefit to be gained from
concurrency?”

Good: “The concurrency model here is adding complexity to the system without any actual
performance benefit that | can see. Because there’s no performance benefit, it’s best for this code to
be single-threaded instead of using multiple threads.”

https://google.github.io/eng-practices/review/reviewer/comments.html

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

‘&?ﬁ UNIVERSITY OF TORON"}O

Social Issues: Egos in Inspections

 Author’s self-worth in artifacts

* |dentify defects, not alternatives; do not criticize authors
e “you didn’t initialize variable a” -> “l don’t see where variable a is initialized”

» Avoid defending code; avoid discussions of solutions/alternatives
* Reviewers should not “show off” that they are better/smarter

* Avoid style discussions if there are no guidelines

e Author decides how to resolve fault

?fi},? The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

Social Issues 2

* Moderator must move discussion along, resolve conflicts
* Meetings should not include management

* Do not use for HR evaluation
* “finding more than 5 bugs during inspection counts against the author”

* Leads to avoidance, fragmented submission, not pointing out defects, holding
pre-reviews

* Responsibility for quality with authors, not reviewers
* “why fix this, reviewers will find it”

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Types of Code Reviews by Formality

 Ad hoc review

e Passaround (“modern code reviews”)
* Pair programming

 Walkthrough

* Inspection

A 4

More formal

Source: Wiegers. Peer Reviews in Software. Addison-Wesley 2002

e The Edward S. Rog SD}
‘ofEl cal & Cor } r Eng

IIU
%:, UNIVERSITY e TORONTO

Differences among peer review types

Formal

Inspection

Walkthrough Yes Yes Yes Yes No
Pair Yes No Continuous Yes Yes

Programming

Passaround No Yes Rarely Yes No
Ad Hoc No No Yes Yes No
Review

Source: Wiegers. Peer Reviews in Software. Addison-Wesley 2002

Summary

* Code reviews effective to identify bugs

» Additional benefits (e.g., knowledge transfer, shared code ownership,
awareness)

* Reviews require understanding
* Different review types with different formality

* Formal inspection require planning & social skills, are expensive, but
very effective

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Further Reading

* Sommerville. Software Engineering. 8t Edition. Addison-Wesley 2007.
Chapter 22.2

e Overview of formal inspections

* Wiegers. Peer Reviews in Software. Addison-Wesley 2002
* Entire book on formal inspections; how to run them and how to introduce them

e Bacchelli and Bird. "Expectations, outcomes, and challenges of modern
code review.” Proceedings of the 2013 International Conference on
Software Engineering. |EEE Press, 2013.

e Detailed studies of modern code reviews at Microsoft

 Oram and Wilson (ed.). Making Software. O’Reilly 2010. Chapter 18

* Overview of empirical research on formal inspections

%’% The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

C @ google.github.io/styleguide/

styleguide

Google Style Guides

Every major open-source project has its own style guide: a set of conventions (sometimes arbitrary) about how to write code for that
project. It is much easier to understand a large codebase when all the code in it is in a consistent style.

"Style" covers a lot of ground, from “use camelCase for variable names” to “never use global variables” to “never use exceptions.” This
project (google/styleguide) links to the style guidelines we use for Google code. If you are modifying a project that originated at Google,
you may be pointed to this page to see the style guides that apply to that project.

This project holds the C++ Style Guide, C# Style Guide, Swift Style Guide, Objective-C Style Guide, Java Style Guide, Python Style
Guide, R Style Guide, Shell Style Guide, HTML/CSS Style Guide, JavaScript Style Guide, AngularJS Style Guide, Common Lisp Style
Guide, and Vimscript Style Guide. This project also contains cpplint, a tool to assist with style guide compliance, and google-c-style.el,
an Emacs settings file for Google style.

https://google.github.io/styleguide/

%2 The Edward S. Rogers Sr. Department

izl of Electrical & Computer Engineering
- g g

#s UNIVERSITY OF TORONTO

Further Reading 2
. = N A

Awesome Code Review

A ¢
= ha
Awesome Code Review &

A curated list of tools, articles, books, and any other resource related to code review

Code review is the systematic examination (sometimes referred to as peer review) of computer
source code.

Contents

e Academic Papers

. s * https://github.com/joho/

e Books

v ToksrandiBbdeacht awesome-code-review

¢ Tools

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

